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The design or discovery of new transition metal-catalyzed
cycloaddition reactions is of preeminent importance to the realiza-
tion of practical, step economical, and green syntheses.1-5 The
rhodium(I) dimer, [Rh(CO)2Cl]2, is of particular interest as an
efficient catalyst for the intra- and intermolecular (5+ 2) reactions
of vinylcyclopropanes (VCP) with alkynes and allenes.4,5 However,
this catalyst is relatively inactive toward alkenes, unlike the cationic
Wilkinson’s catalyst.6 We investigated the origins of this substrate
selectivity computationally, and have discovered how substantial
differences in reductive elimination barriers control the ease of
reaction.

The computed free energy versus reaction progress profiles for
the Rh dimer catalyzed (5+ 2) cycloaddition of VCP with
acetylene, allene, and ethylene are shown in Figure 2.7,8 The
catalytic cycle begins with the facile oxidative ring opening of the
VCP by the active catalyst, Rh(CO)Cl. Various isomers of the ring-
opened intermediate can be found, and the most stable is2. The
coordination of a 2π component (ethylene3a, allene 3b, and
acetylene3c), and its subsequent insertion into the Rh-allyl bond
leads to the formation of intermediate metallacycles,5a-c. The
final step of the reaction is the reductive elimination that forms
the second C-C bond. The product complex liberates the product
via transfer of catalyst to another VCP.

The computed barriers9a for the 2π insertion steps are quite
similar for all three species: 22.5 kcal/mol for ethylene (TS-4a),
22.4 kcal/mol for the allene (TS-4b), and 21.3 kcal/mol for the
acetylene (TS-4c).9b The main difference between the ethylene and
allene or alkyne pathways is in the final reductive elimination step.
This step is extremely fast for allene (TS-6b) and acetylene (TS-
6c) with a free energy barrier of 20.0 kcal/mol and 14.5 kcal/mol,
respectively, from the metallacycle intermediates (5b and5c). In
contrast, the analogous barrier for ethylene (TS-6a) is quite high
at 29.3 kcal/mol.

The computed free energy spans10 for allene and acetylene9c are
small (∆Gq ) 22.4 kcal/mol and 21.3 kcal/mol, respectively); these
are identical to the 2π insertion barrier. In contrast, the free energy
span is much higher for ethylene (∆Gq ) 29.3 kcal/mol) and is
identical to the barrier for reductive elimination. Thus, the difficulty
of the reductive elimination is responsible for the failure of [Rh-
(CO)2Cl]2 to catalyze the (5+ 2) reactions between VCP and
alkenes.

The large difference in the reductive elimination barriers is
attributed to the different ability of each substrate to facilitate the
reductive elimination by the residualπ-bond (Figure 1). In the allene
(TS-6b) and acetylene (TS-6c) cases, the reductive elimination step
is a migratory reductive elimination, involving the assistance of a
traditional reductive elimination step by the developing ligandπ-Rh
coordination. The Rh-C σ-bond smoothly evolves into a Rh-C
π-bond. However, in the case of ethylene, the reductive elimination
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Figure 1. The computed 2π insertion, reductive elimination, and the product
complex structures involving acetylene, allene, and ethylene.11
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is unassisted because of the lack of aπ-system on the migrating
ligand (TS-6a).12

The stability imbued by theπ-coordination is most evident in
the product Rh complexes. In structures7b and 7c, the Rh is
coordinated by twoπ-bonds, while in the ethylene case,7a, it is
coordinated by a singleπ-bond and a weaker C-H agostic
interaction. This difference renders the allene and acetylene
reductive elimination more exergonic than that of ethylene by 8.3
and 33.0 kcal/mol, respectively.

Computed energetics reveal that the (5+ 2) cycloaddition of
VCP and alkene should be difficult, but not impossible. Indeed,
the intramolecular (5+ 2) cycloaddition involving an alkene has
been found to occur under more forcing conditions (eq 2), as
expected by these calculations.13

A comparison of the [Rh(CO)2Cl]2 catalyzed (5+ 2) cyclo-
additions between vinylcyclopropane and acetylene, ethylene, and
allene reveals that the reductive elimination step determines the
substrate selectivities in these reactions. The reductive elimination
involving alkenes is substantially more difficult than those involving
alkynes or allenes.
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Figure 2. Free energy reaction progress profile for the Rh-dimer-catalyzed intermolecular (5+ 2) cycloadditions involving acetylene, ethylene, and allene.
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